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Self-consistent dynamics of wall slip
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A simple molecular model is studied to explain wall slip in a polymer melt. We consider a tube model for
tethered chains in which the most important relaxation mechanisms: convective constraint release and chain
stretching~retraction!, are incorporated. Furthermore, we take the interactions between tethered chains and
bulk flow self-consistently into account. Numerical simulations show that our model exhibits an entanglement-
disentanglement transition, leading to a jump in the slip velocity which increases with the number of entangle-
ments and the grafting density. The wall shear stress is found to be a nonmonotonic function of the slip and
plate velocity, yielding the possibility of hysteresis and spurt instabilities. In a simplified version of the model
we show via an analytical approach that the stick-slip transition is asymmetrical: the transition from stick to
slip is much faster than the slip to stick transition. Our analysis reveals the existence of a dimensionless
parameter that determines the time scale of the dynamics for the slowing down of the bulk flow. The relative
rate at which relaxation of the tethered chains and slowing down of the bulk take place, seems to be quintes-
sential for the slip behavior of the melt.
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I. INTRODUCTION

The so-called no-slip boundary condition has been scr
nized since a long time. Molecular dynamics simulations@1#
and experiments have shown that for Newtonian fluids
no-slip condition is in general satisfied. However, for po
mer flows~melts! it has been known for many years that s
may occur if a polymer melt flows along a solid surface@2#.
In 1979 de Gennes@3# argued that slippage in polymer flow
is due to the high viscosity of polymeric fluids. If long poly
mer chains are grafted on a solid interface, the slip is gre
reduced, but does not disappear@4#. In this case one has
transition from stick to slip boundary conditions. It was r
alized that the mechanism governing the change from s
to slip boundary conditions could be found in a
entanglement-disentanglement transition.

Many investigations of different aspects of this transiti
have been performed. Some of them used highly complica
models for the polymer flow and most of them consider
slip velocity as given@4–6#. Our goal is to provide a self
consistent physical picture of wall slip for the case in whi
the slip is caused by disentanglement of chains grafted on
wall from the polymers in the bulk. We will restrict ourselve
to polymer melts, for these are of most interest for practi
purposes.

The entanglement-disentanglement mechanism, as
posed in Refs.@3,4#, predicts that there are essentially thr
different slip regimes. In the first regime the velocity near t
wall is very small, so that the tethered molecules will e
tangle with the flow and have a more or less random sph
cal configuration. The friction between the tethered m
ecules and the melt will be Stokes-like, that is, it
proportional to the radius of gyration of the attached m
ecule, which depends linearly on the square root of the
lymerization indexN. In this regime, the wall shear stres
increases monotonically with the velocity near the wa
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which can be identified with the~wall! slip velocity. When
the slip velocity increases beyond a certain value, we e
the second regime in which the tethered molecules no lon
have a spherical shape, but are stretched to a degree at w
the friction scales linearly withN, so-called Rouse friction
Since this friction force is much weaker than the Stokes fr
tion, the molecule retracts, after which it will stretch aga
This motion is calledbreathingand the range of velocities
for which this occurs is designated as themarginal regime.
Breathing implies that the time-averaged stress is cons
for a range of velocities. The instantaneous stress is osci
ing, reaching a maximum when the tethered and bulk cha
are maximally entangled and a minimum when the entan
ments are released. When the velocity near the wall incre
still more, we reach the third regime in which the tether
molecule is completely disentangled from the melt and
most permanently in a stretched state so that the frictio
Rouse-like. In the third regime, the stress near the wall
creases again monotonically with the slip velocity.

If instead of the flow velocity near the wall, the she
stress is considered as the independent quantity one find
following. When the wall shear stress is very small, the
will be a negligible slip velocity. This slip velocity increase
monotonically with the shear stress, until a critical value
the shear stress is reached. When the stress is increase
yond this value, a large increase in the slip velocity is o
served after which the slip velocity will again increa
slowly with wall shear stress.

The theory behind the mechanism of slip and some mo
fied versions thereof@4–6# have been experimentally con
firmed in Refs.@7–9#. In these papers the wall slip velocit
has been directly measured in the vicinity of the wall.
displays a transition from low slip to high slip as a functio
of the apparent shear rate. However, for grafting densities
which the theory of Ref.@3# should apply, the measured tran
sition is much less steep than predicted@9#. Only for grafting
densities more than ten to hundred times higher than
critical grafting density, a steep transition from no slip to s
is observed.
©2003 The American Physical Society03-1
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In most experiments evidence of slip is indirect. In
extrusion experiment as sketched in Fig. 1, the throughpu
measured as a function of the pressure difference or
versa. Increasing the piston speed, which amounts to incr
ing the wall shear stress, gives rise to~surface! instabilities,
such assharkskin, spurt, andgross melt fracture. The pres-
sure often shows an intermediate regime of large oscillatio
usually denoted by spurt. Sharkskin indicates small surf
distortions and gross melt fracture is commonly used
large distortions which not merely affect the surface, but a
the volume of the extrudate. In Refs.@10,11# it was demon-
strated qualitatively that some of these instabilities m
originate from a stick-slip phase transition. Their descript
in terms of Ginzburg-Landau theory requires a nonmo
tonic relation between the slip velocity and the wall she
stress, which was simply assumed. Here we show how
slip velocity versus shear stress relation depends on the
lecular parameters, and that a nonmonotonic relation
tween shear stress and slip velocity can actually occur.

Although the entanglement-disentanglement phenome
gives a good qualitative description of the fact that polym
systems exhibit a nonzero slip velocity at the wall, the tim
dependent dynamics of the transition is usually not con
ered. Theories that do describe the dynamics of polym
fluids are reptation theories in which stresses are calcul
for a prescribed shear rate. In stick-slip situations the flow
not constant in time, but changes due to entanglements
tween tethered and bulk chains, which suggests that one
not use a prescribed shear rate description. One way to o
come these difficulties is to separate the flow region into t
parts: a layer near the wall, the so-called interfacial lay
and a bulk layer which comprises all the polymers which
not belong to the interfacial layer. This method has be
pursued in Refs.@12,13#, and gives results that agree rath
well with experiments.

Here we follow a complementary approach, based on
full dynamics of the grafted chains, which takes the influen
of the grafted chains on the bulk flow into account in a se
consistent way. This means that we have to consider both
drag force of the bulk on the grafted chains and the action
the grafted molecules on the flow~velocity! of the polymers
in the bulk. For the movement of the grafted chains we n
to invoke molecular theories describing entangled polym
systems.

FIG. 1. A sketch of the setup for an extrusion experiment. T
pulsating output is due to spurt. The undulations superposed on
pulsations indicate sharkskin.
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A very successful model for the flow of entangled pol
mers is a modified version of the Doi Edwards theory th
was put forward by Mead, Larson, and Doi@14#. It describes
entangled polymers which can reptate, retract, stretch,
show contour length fluctuations. Furthermore, the relaxa
mechanism which is crucial for intermediate times in sh
flow systems, the so-called convective constraint rele
~CCR! mechanism, was taken into account. The model w
coined contour variable model and consists of a set of pa
differential equations for the stress tensor, the contour len
and orientation of the polymers. Very recently this conto
variable model has been applied to model wall slip@12#.
Since we are interested in the stick-slip transition and
physical mechanism behind it, we concentrate on the dyn
ics of the grafted chains and their interactions with the bu
We therefore solve the equations of motion of the graf
chains numerically, which amounts to solving a system
stochastic differential equations.

Recently, this approach of handling polymer flows h
also been successfully applied to the single- and double-
strain case@15#. The model presented here is of a simil
nature as the one employed in Ref.@15#, but adapted to the
case of tethered polymer chains in a bulk environment. F
thermore, our description contains all ingredients that w
also present in Refs.@12,14#, but it additionally provides us
with a clear physical picture behind the slip mechanism.

The entanglements between tethered and bulk chains
rise to constraints for the tethered chains. These constra
are depicted as points, which form a grid through which
tethered chain cannot pass. The entangled grafted chain
its way by performing a random walk, caused by therm
fluctuations and interactions with the bulk molecules. W
remark that the rate of entanglement between grafted
nongrafted molecules is determined by two compet
mechanisms.

~1! The bulk molecules passing tend to squeeze
grafted chains against the wall. If the chains would not
subject to random forces, the chains would just align with
flow and in their final equilibrium state the molecules wou
all be maximally stretched and lying along the wall.

~2! Since there are Brownian forces, the chains are c
tinuously changing there conformation, thereby creating n
or annihilating existing entanglements with the bulk po
mers. These volatile conformational changes are often ca
contour length fluctuations when the fluctuations are sm
or breathing modes, when the tube is really renewed.

Thus, we may summarize as follows. In our model t
interactions between the bulk molecules in the flow and
grafted chains are accounted for in a self-consistent way,
is, the velocity profile of the bulk molecules is slowed dow
due to entanglements between grafted and bulk chains
simultaneously the attached polymer chains are drag
along with the flow. This will lead to a velocity profile in
which two regions can be distinguished. In the layer near
wall, the interfacial layer, the velocity rapidly decrease
whereas in the remaining region, the bulk region, the sh
rate is constant. A similar division in two layers was al
performed in Refs.@12,13#, but there the thickness of th
boundary layer did not depend on the shear rate, but
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SELF-CONSISTENT DYNAMICS OF WALL SLIP PHYSICAL REVIEW E67, 011803 ~2003!
simply a parameter. Here we calculate the thickness of
interfacial layer and the velocity profile within this layer se
consistently, which shows that they depend on the shear

We should further stress that the model does not req
the slip velocity to be prescribed. The slip velocity is defin
as the velocity of that layer of the bulk polymers near t
wall, which is the first layer not entangled with the graft
chains in the interfacial layer. It follows from self-consiste
simulations that the slip velocity depends on the upper p
velocity in plane Couette flow and a few molecular para
eters. We observe that the velocity exhibits a jump as a fu
tion of the plate velocity, which is more pronounced wh
the polymerization indexN of the grafted chains increases
when the distance between entanglementsNe decreases. We
also find that the onset of slip increases approximately
early with the grafting densityn, which has also been pre
dicted in Ref.@5# and confirmed experimentally.

Moreover, the relation between stress and slip velocity
shown to be a nonmonotonic function. An ingredient whic
when coupled to the momentum equation for the bulk flo
can for example give rise to the spurt instability@10#.

This paper is divided into four sections. In the followin
section we will give a detailed description of the model. T
numerical results are presented in Sec. III and the con
sions and discussion are given in Sec. IV.

II. DESCRIPTION OF THE MODEL

In this paper we study the interaction between chains
tached to the wall and flowing bulk chains. Since the int
action takes place in a layer near the wall whose thicknes
maximally equal to the radius of gyration~in the limit of no
flow!, we may choose the situation further away from t
wall as simple as possible. That is why we study plane C
ette flow. It has the additional advantage that experime
data are available for this case@7–9#. In Fig. 2 a sketch~not
on scale! of the velocity profile in the boundary layer i
presented. It should be realized that in steady state condit
the flow has a linear velocity profile in the bulk, but not
the interfacial layer near the wall. The velocity profile in th

FIG. 2. Sketch of the flow of the grid of constraints. Due
interactions between the grafted chains and the bulk molecules
velocity is smallest near the wall. In the self-consistent appro
not only the interactions of the bulk polymers on the grafted cha
are taken into account, but also the reaction of the bulk. The in
actions between grafted chains and bulk molecules are local a
entanglement points. This establishes a similar restricted movem
of the tethered chain as the depicted tube.
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layer is not given beforehand, but is one of the unknowns
be determined in a self-consistent way@16–21#.

The grafted chains are supposed to be distributed al
the wall with average densityn. The interaction between
different grafted chains is neglected, which implies that
grafting concentration is sufficiently low, i.e.,nR0

2,1,
where R0 denotes the radius of gyration of the grafte
chains. This situation is often referred to as the mushro
regime. Later on we shall apply the model also for high
grafting densities, since experiments suggest that the inte
tion between grafted chains can still be neglected, for de
ties up to more than ten times the critical densitync51/R0

2

@9#.
Due to its thermal energy or volatility a tethered cha

will find its way in the dynamic network of the bulk mol
ecules passing by. Since a grafted chain cannot freely rep
its motion may be referred to as breathing, like in star-sha
polymers@24#. The grafted chains stretch and contract in
breathing fashion, the motion just being restricted by
constraints imposed by the bulk molecules and the w
These constraints make the movement of the grafted c
predominantly take place in a tubelike region@22#, of which
one end is constantly destroyed and recreated in
entanglement-disentanglement process, such that after s
time an entirely new tube is formed@23#.

To study the dynamics of the entanglemen
disentanglement process, we need to represent the bulk
ecules such that simulations can be done in a reasonable
span. To that end we introduce the following model. T
flowing bulk molecules, which act as potential entanglem
points for the tethered chains, are represented by obstacle
a lattice. To reduce the model to its essentials, we ass
that the breathing motion of a tethered chain is restricted
two-dimensional motion taking place in the plane perpe
dicular to the wall and parallel to the flow direction. Th
situation is sketched is Fig. 2. Initially the grid of obstacl
in this plane is square with lattice parametera. The grid
points move parallel to the wall. Grid points in the sam
horizontal layer have equal velocities, so that they kee
constant distancea. It is important to realize that the veloci
ties of the layers are different and have to be calculated.

The interaction between the grid and the grafted cha
takes place at localized points where the grid points and
grafted chains touch; these points are called entangleme
Since the number of entanglements increases when the
tance to the wall decreases, the velocity is rapidly decrea
in the vicinity of the wall.

When the obstacles are moving parallel to the wall, th
drag the tethered chains that are entangled with one or m
layers along. If a tethered chain is entangled with a laye
will slow down the layer’s velocity, since there is mutu
interaction between the bulk layers and grafted chains,
is, the grafted chains stretch and the bulk layers slow do
As the chains stretch, stress is built up in the chain, which
only relaxed when the chain retreats from the layer and lo
contact with it. One reason for losing entanglements is t
the constraints are simply convected away. This proces
referred to as CCR. If the tethered chains would be pas
ropes, this would eventually result in a rope configurati
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JOHAN L. A. DUBBELDAM AND JAAP MOLENAAR PHYSICAL REVIEW E 67, 011803 ~2003!
without any entanglements between bulk and grafted m
ecules. This amounts to a configuration in which the rope
squeezed against the wall. In this case the interaction
tween the bulk and attached chains is only by~Rouse! fric-
tion, which is much smaller than the entanglement inter
tion. The passive rope scenario sketched above is in pra
counteracted by the volatility of the grafted chains.

In our model we describe the grafted chains by be
spring or so-called Rouse chains. If such a grafted chain
entangled with one or more moving layers, stress is indu
in the chain. Several stress relaxation mechanisms now
come relevant. On short time scales the beads are redis
uted, such that the induced stress is equally distribu
among the tube segments. The length fluctuations of ch
occur on the same time scale~Rouse time!.

Reorientation of the chains happens on a much lon
time scale. This can occur by the breathing process descr
above, CCR, or simply constraint release~CR!. Constraint
release is the process that is due to reptation of the b
chains: the constraints on the tethered chain disappear, w
can therefore relax@6#. This process is particularly importan
when the environment consists of chains that are relativ
short. Since the length of a grafted chain is usually cons
erably shorter than the length of the bulk chains, due to
fact that a single grafted chain may be in contact with
wall at several places, this relaxation process can be
glected in our considerations. In the model presented be
the most relaxation mechanisms for grafted chains, bre
ing, and CCR, are accounted for. The slip law we are aim
at is mostly determined by the competition between C
and breathing relaxation mechanisms.

After this general description of the model we will no
focus on the evolution equations for the grafted chains.

A. Dynamics of the tethered chains

We consider a chain attached to the wall consisting oN
beads and connected byN21 springs. With exception of the
first and last beads, and the beads adjacent to an enta
ment, they satisfy the Langevin equation

z1

]xn

]t
5k@xn11~ t !1xn21~ t !22xn~ t !#1fn~ t !,

n52, . . . ,N21, ~1!

wherez1 is the friction coefficient of a monomer,xn(t) de-
scribes the position of thenth bead. In view of the
fluctuation-dissipation theorem the spring constantk is re-
lated to the temperatureT by

k5
3kBT

b2
. ~2!

Here b denotes the Kuhn length andfn(t) is the Brownian
force, whose componentsf n

i (t) satisfy

^ f n
i ~ t !&50, ^ f n

i ~ t1! f m
j ~ t2!&52kBTz1d~ t12t2!dnmd i j ,

wherei , j stand forx or y.
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The first bead is attached to the wall atx15(x1,0). Modi-
fication of Eq.~1! for the first and last beads is straightfo
ward. Equation~1! only applies when the chain has no inte
action with a layer. In the vicinity of an entanglement th
chain is dragged along with the bulk flow by the obstacl
This interaction with a layer is highly local. The influence
the entanglement is felt by the rest of the chain indirec
namely, through their interactions with the neighbori
beads. This implies that Eq.~1! is only valid for the beads
not adjacent to an obstacle. These beads satisfy an adju
equation. In Fig. 3, we show a detail of the situation in whi
a grid point with coordinate vectorX i hits the chain between
two beads with coordinatesxn andxn11. The force exerted
on this bead by the spring betweenxn and xn21 is simply
given byk(xn212xn).

The force stemming from the interaction between thenth
and (n11)th bead is mediated by the spring, which is be
along an obstacleX i , and it is given byk( l i1 l i 11). So, the
force is proportional to the total length of the spring whi
consists of two partsl i andl i 11 as is indicated in Fig. 3. The
force between thenth and (n11)th bead points in the direc
tion of X i2xn . The total forceFn felt by thenth bead reads
as

Fn5k~xn212xn!1k~ l i1 l i 11!
X i2xn

l i
. ~3!

For the force on bead (n11) we similarly find

FIG. 3. Detail of the chain conformation. The obstacle atX i

indicated by the large circle interacts with the beads atxn andxn11

by streching the spring that connects them. At the same time
velocity of the obstacle is reduced due to the increased tensio
the spring which is exerting a reaction force on the obstacle.
3-4
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SELF-CONSISTENT DYNAMICS OF WALL SLIP PHYSICAL REVIEW E67, 011803 ~2003!
Fn115k~xn122xn11!1k~ l i1 l i 11!
X i2xn11

l i 11
. ~4!

Beads adjacent to an entanglement obey evolution equa
~1! with the term proportional tok replaced byFn or Fn11
depending on the position of the bead relative to the
tanglement point.

If we nondimensionalize our equations and use as uni
length the Kuhn lengthb and as unit of timet defined by

t5
b2z1

3kBT
, ~5!

we can recast Eq.~1! into the form

] x̄n

] t̄
5 x̄n111 x̄n2122x̄n1Gn~ t̄ !, ~6!

where

x̄5
x

b
, t̄ 5

t

t
, ~7!

are dimensionless quantities. Note thatt5tRp/N2, where
tR is the Rouse relaxation time of the chain. The choice ot
as unit of time leads to equations with a very conveni
form. The components of the dimensionless random for
Gn

i ( t̄ ) now satisfy

^Gn
i ~ t̄ !&50, ^Gn

i ~ t̄ 1!Gm
j ~ t̄ 2!&5

2

3
d~ t̄ 12 t̄ 2!dmnd i j .

The nondimensionalization of the equations for the be
adjacent to an entanglement point which containFn or Fn11
is analogous. Having obtained the evolution equations of
tethered chains we now turn to their influence on the velo
of the chains in the polymer bulk.

B. Dynamics of the bulk chains

We derive the equation of motion for the grid layers. W
assume the flow to be described as a system which con
of P layers moving in parallel. This is also depicted in Fig

FIG. 4. Schematic representation of plane Couette flow. Th
are two different regions, the interfacial layer and the bulk laye
The thickness of the interfacial layerH depends on the plate veloc
ity Vp , and is largest~of the order of the gyration radius!, when the
upper plate is not moving at all, so whenVp50.
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2 and 4. LayerP is farthest away from the lower wall and it
velocity is prescribed. The velocity profile, i.e., the lay
velocitiesv i ,i 51, . . . ,P21, are obtained from the simula
tions. Let us first consider a situation without chains graf
on the wall. The interaction between two neighboring lay
takes place via molecular friction mostly due to entang
ments. Its strength is measured by the viscosityh. In this
paper we takeh constant, but shear thinning via a she
dependent viscosity can easily be incorporated in the si
lations. The dimensionful equation of motion for layersi
52, . . . ,P21 is

ra
dv i

dt
52h~2v i2v i 112v i 21!, ~8!

wherea is the distance between two layers andr is the mass
density of the melt. The first layer has to be treated se
rately, since it interacts via~Rouse! friction with the wall
@4,9#. For layer one we have

ra
dv1

dt
5h~v22v1!2FW~v1!. ~9!

The friction forceFW depends onv1 and the material prop-
erties. AsFW is monotonically increasing, the system give
by Eqs.~8! and~9! has a unique steady state that is linear
the distancei from the wall. The system converges to th
steady state with a factor approximately given by e
(2h/ra). A special case is the so-called plug flow, whe
FW50, with steady statev i5vP ,i 51, . . . ,P21. Another
extreme case is obtained whenFW is much larger than the
shear forces. In this casev150 andv i5( i 21/P21)vP for
i .1.

The next modeling step is the representation of one
more layers interacting with a grafted chain. The chain
attached to the wall atX0, say. The chain will create its firs
entanglement with layer 1 at entanglement pointX1. Its sec-
ond entanglement at positionX2 is probably with layer 2, but
it might also happen that the chain crosses layer 1 again f
above. The next entanglement pointX3 is situated in one of
the layers 1, 2, or 3. So, if a grafted chain hasM entangle-
ments, its conformation or tube is characterized byX i ,i
51, . . . ,M , entanglement points, which lie scattered ov
the grid layers near the wall. Given theX j , the dynamics of
the chain, that is, of all its constituting beads are governed
the equations of motion given in Sec II A. Rearrangemen
the beads during a time step in the calculation may cause
creation of an extra entanglementXM11 or annihilation of
the last entanglementXM .

If two entanglementsX j andX j 11 are in neighboring lay-
ers, these layers have interaction via the part of the gra
chain betweenX j andX j 11. This part forms a linear spring
betweenX j andX j 11 with spring constantkj and therefore
the expression forkj which is valid for a Rouse chain in a
tube @22# applies

re
.

3-5



e
in

e
f

ye

e

or
gh
th
th
pl

ns
cal
the
s-

as
city

s

in
first
t
r

is
the

ents

cous
te,

s

ith
a
t

co

city
ne
f the
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kj5
3kBT

Njb
2

, ~10!

where Nj is the number of beads betweenX j and X j 11.
From the literature@22,24# we know thata5ANeb, where
Ne is the average value ofNj for a chain in equilibrium. The
parametersb andNe depend on the type and density of th
polymer and are known for many systems. The bookkeep
of the entanglementsX j is important in our calculations. Th
effect of neighboring layers being connected by parts o
grafted chain is most easily explained if we consider
grafted chain for which the distance ofX j from the wall
increases monotonically withi. If X j5(Xj ,Yj ) thenYj5 ja
in this special case and the equation of motion of the la
j , j 52, . . . ,M21, is

ra
dv j

dt
52h~2v j2v j 112v j 21!1kj~Xj 112Xj !

2kj 21~Xj2Xj 21!. ~11!

For layerM, which is farthest away from the wall, we hav

ra
dvM

dt
52h~2vM2vM112vM21!2kM~XM2XM21!

~12!

and for the first layer

ra
dv1

dt
52h~v12v2!1k2~X22X1!2k1~X12X0!

2FW~v1!. ~13!

We emphasize that in reality the bookkeeping is much m
intricate. Figure 5 shows that it may happen that two nei
boring layers are connected by two different parts of
same grafted chain. To elucidate the basic principles of
present model we show how it works in an extremely sim
situation.

FIG. 5. Picture of a tethered chain which has interaction w
four grid points. One of the more intricate configurations that c
occur during the simulation process: the chain passes through
second layer into the third layer and subsequently enters the se
layer again from the above.
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Stick-slip transition in a system with three layers

In this subsection we make some simplifying assumptio
in order to obtain an analytical estimate for one of the typi
time scales in the problem. It is not supposed to explain
numerical simulations of the full system which will be di
cussed later.

We consider the configuration with three grid layers
sketched in Fig. 6. The third layer has a prescribed velo
v3 equal to the plate velocityVp . Moreover, in this example
there is a permanent entanglementX1 with layer 1. We as-
sume that the particular chain we consider representn
chains per unit area grafted on the wall of whichn1 have an
entanglement with layer 1. In this particular example,
which all chains are assumed to be entangled with the
layer, we haven5n1. If not all grafted chains would interac
with the first layer,n1,n, and n2n1 tethered chains pe
unit area would be squeezed against the wall. In realityn1
will be, after time averaging, a function ofVp and an out-
come of the simulations. For simplicity, we taken1 here to
be known in advance and constant.

The dimensionful equations for the velocitiesv1 and v2
for layers one and two are

ra
dv1

dt
5h~v22v1!2k1n1~X12X0!2FW~v1!,

ra
dv2

dt
5h~v31v122v2!. ~14!

The first equation shows that the velocity of the first layer
enhanced as a consequence of viscous friction between
first and second layer and is reduced due to entanglem
with the grafted chain and friction with the wallFW . The
second equation expresses that layer 2 experiences vis
friction from its two neighboring layers. In the steady sta
the velocityv2 of layer 2 will be equal to the average ofv1
andv3.

TakingFW50 for simplicity, the dimensionless velocitie

v̄1(t) and v̄2(t) satisfy

dv̄1

d t̄
5

ht

ra2
~ v̄22 v̄1!2

k1t2n1

ra
X̄1 ,

~15!
dv̄2

d t̄
5

ht

ra2
~ v̄31 v̄122v̄2!.

n
he
nd

FIG. 6. Sketch of the three layered system. The plate velo
Vp is transmitted entirely to the third layer and there is only o
entanglement, between the grafted chains and the first layer o
bulk molecules.
3-6
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SELF-CONSISTENT DYNAMICS OF WALL SLIP PHYSICAL REVIEW E67, 011803 ~2003!
This system of differential equations can be recast int
simple form by introducing the dimensionless parametere
5rNeb

2/ht and u153kBTt2n1 /rNe
3/2b3. Dropping the

bars and denoting differentiation with respect tot̄ by a dot
yields

e v̇15v22v12u1eX1 ,

e v̇25Vp1v122v2 . ~16!

The entanglement-disentanglement transition turns ou
be a matter of scales. The parametere is very small, typically
of the order of 10211210212, whereasu1 is of order 104

2105, at an entanglement densityn1 equal to the critical
grafting densitync5(1/R0

2)(1/Nb2). This implies that Eqs.
~16! represent a singularly perturbed system. Since Eqs.~16!
are linear, the system can be explicitly solved as is don
the Appendix. Here we will make some qualitative rema
about the system defined by Eqs.~16! and graphically
present the solution.

There are two extreme cases. In the first case all
grafted chains reach the first layer, sou15umax, or equiva-
lently n15n. In the other extreme case there are no entan
ments with the obstacles in the first layer, son1 and therefore
u1 vanishes. This leads again to the linear velocity profile
discussed before.

If, for illustrative purposes,u1 in Eq. ~16! is taken con-
stant in time and equal toumax, we find that the velocity in
the first and second layer is decreasing with a typical re
ation timetc . The solution is shown in Fig. 7 and shows th

FIG. 7. The evolution of~dimensionless! velocitiesv1 and v2

for two different values ofeu plotted as a function of~dimension-
less! time t. For the dashed curveseu51024 and the solid curves
represent the caseeu51026. In both casesVp50.01.
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v2 approaches the average ofv1 andVp , which is justVp/2,
sincev1 goes to zero andv35Vp for all times. The relax-
ation timetc is given by

tc5
1

2u1e
5

h0a

6kBTt1n
5

h0ANe

2bz1n
. ~17!

The time-scaletc at which the velocity of the layers in th
bulk slows down is a long time scale, due to the smallnes
eu1. It is also shown in the Appendix, that when the e
tanglement is released, the plug flow situation is reest
lished almost immediately, and the entire process repeat
self from the beginning. This artificial example clearly show
that in a stick-slip situation the transition from stick to slip
much faster—almost instantaneous—than the transition f
slip to stick, which occurs on the time-scaletc . Numerical
simulations suggest that these two time scales are
present in the full system, and crucial for the occurence o
stick-slip transition.

III. SIMULATION RESULTS

Our aim is to find out how the slip velocity depends o
Vp . The slip velocity is defined here as the average spee
the layer closest to the wall that never has entanglem
with grafted chains. We performed numerical simulations
integrating the model equations supplemented with suita
boundary conditions. For convenience we took the spr
constantkj , given by expression~10!, equal to its equilib-
rium value 3kBT/Neb

2. This amounts to averaging the forc
exerted on the bulk layer over the equilibration time, whi
is reasonable since the entanglements generally persist m
longer than the equilibration time of the chain segments@22#.

Where possible, the parameter values were taken in ac
dance with Ref.@9#, in which experiments performed on
polydimethylsiloxane~PDMS! melt are described. We con
sider a configuration in which the distanceD between the
two plates is 10mm. The typical length of a Kuhn segmen
is b510 Å. Furthermore, we take the number of monom
N of a chain attached to the wall fixed and equal to 100
order to be able to do calculations within a reasonable t
span. The average entanglement lengthNe is set equal to 10
or 5 in our simulations, which fixes the layer distance sin
a5ANeb. The temperatureT is of the order of 300 K, which
implies a timet of the order ofms, which is in agreemen
with Ref. @25#. The parameterumaxe will be varied between
1024 and 1027 which corresponds to changing the graftin
density fromn50.1nc to 100 times the critical densitync .

In Fig. 8, a logarithmic plot of the dimensionless sl
velocity V̄s is presented as a function of the~dimensionless!
plate velocityV̄p . It displays the three slip velocity regime
that were expected. For smallV̄p the slope of the curve is
constant. The value ofV̄p for which the slope starts to in
crease is denoted byV̄p

! . For V̄p.V̄p
! the slope has initially

a higher value. This region is referred to as the transit
region. For very large values ofV̄p the slope approaches on
The transition is only mild and not very sharp in contra
with the predictions in Ref.@3#. From experiments it is
3-7
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JOHAN L. A. DUBBELDAM AND JAAP MOLENAAR PHYSICAL REVIEW E 67, 011803 ~2003!
known @9# that the transition depends on the density of
grafted chains and the number of entanglements. In fact
densitiesn'nc , no sharp transition is observed experime
tally, but only a mild transition comparable to ours@9#. Only
when the densities are increased well beyondnc , say 10 to
100 timesnc , the transition is very sharp, almost vertical.

The data of Fig. 8 can also be presented by looking at
so-called extrapolation lengthl, defined by l 5VsD/(Vp

2Vs) . We see from Fig. 9, that thel /D versusV̄slip curve
exhibits a crossover from a practically constant to an
proximately linearly increasing regime. The crossover in
velocity and l /D was also observed in the experiments

FIG. 8. Plot of the slip velocity as a function of the upper pla

velocity V̄p for eumax51027 ~a!, eumax51026 ~b!, eumax51025 ~c!,
and eumax51024 ~d!. The beginning of the transition region in
creases with increasingeumax in agreement with experiment and th
predictions in Ref.@3#. Also the transition is more pronounced fo
larger values ofeumax, which has also been observed experime
tally.

FIG. 9. The extrapolation lengthl /D as a function of the slip

velocity V̄slip for three different values ofeumax. Curve ~a! corre-
sponds toeumax51026, ~b! to eumax51025, and ~c! to eumax

51024. The sudden increase ofV̄slip is most clearly present fo
eumax51024, which has the largest grafting density.
01180
e
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-

e

-
e

Refs. @7# and @9# and were predicted qualitatively by d
Gennes in Ref.@3#.

To find the dependence on the number of entanglem
we changed the value ofNe to Ne55, which corresponds to
enhancing the number of entanglements. The numerica
sults in this case, together with theNe510 result for com-
parison, are depicted in Fig. 10. It shows that the transit
becomes sharper with decreasingNe values. From the simu-
lations it can be inferred that atV̄p5V̄p

! the relaxation

mechanism for the tethered chains has changed. In factV̄p
!

designates the value of the plate velocity above which C
is the dominating relaxation mechanism of the tethe
chains. For plate velocities smaller thanV̄p

! , the bulk flow is
slowed down so much that the constraints are no longer
moved from the tethered chain by CCR, and therefore
other relaxation mechanism, arm retraction, becomes do
nant.

Considering the grafted chain conformations and the
locity profile of the grid elucidates the processes that ta
place if one increases the plate velocity. In Fig. 11 two ch
conformations and two velocity profiles are depicted for tw
different values ofV̄p . Chain ~a! corresponds toV̄p50.005
and ~b! to V̄p50.001. Since the bulk flow tries to drag th
grafted chains along, there will always be a part of the ch
nearX0 that is squeezed between the wall and the first lay
This part of the chain will be longer for higherV̄p , which
agrees with Fig. 11. The tail of the chain can escape
dragging of the grid by arm retraction and subsequently t
renewal or breathing. Precisely this process is displayed
Fig. 11. Since the drag is stronger for higher values ofV̄p ,
chain ~a! has a smaller tail which point upwards than cha
~b!. The consequences for the velocity profile are that ther
less slowing down for chain~a! than for chain~b!, since there
are fewer entanglements for~a! than for~b!. Also the veloc-
ity profile for ~b! shows that the velocity decreases fas
closer to the wall.

-

FIG. 10. The slip velocity shown as a function of the upper pl

velocity V̄p for fixed eumax51026, but for different values ofNe .
The dashed curve corresponds toNe510 and the solid one toNe

55. The transition forNe55 clearly is much steeper than forNe

510.
3-8
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SELF-CONSISTENT DYNAMICS OF WALL SLIP PHYSICAL REVIEW E67, 011803 ~2003!
Another important quantity is the wall shear stress. It c
be calculated by employing the Kirkwood expression to c
culate the stress in the chains attached to the wall@22#:

sxy
entang~ t !5

3ckBT

Nb2 K E
0

L

dsL~ t !ux~s,t !uy~s,t !L , ~18!

wherec is the number of polymers per unit volume,L the
length of the tube andux(s,t),uy(s,t) denote thex and y
components of the vector tangent at the tube at positions at
time t. The contour length coordinates is zero at the wall and
L at the end of the chain. There is another contribution to
stress besides that given in Eq.~18!. At high plate velocities
the grafted chains are dragged along with the flow and or
parallel to the wall. Nevertheless, they experience frict
due to the bulk chains that flow along, although there are
entanglements. Under entanglement conditions, the la
stress contribution is negligible compared to the stress a

FIG. 11. Two chain conformations and velocity profiles for tw

different values ofV̄p and fixed values foreumax51026 and Ne

55. Configuration~a! corresponds toV̄p50.005 and~b! represents

V̄p50.001. The chains both have a part which is approxima
horizontal and a tail that is entangled with the bulk which poi
upwards. The velocity profile~a! corresponds nearly to plug flow
since the interfacial layer is very small. The velocity profile~b!
reveals that the velocity tends to zero over an interfacial layer c
sisting of a few bulk layers.
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ciated with the entanglements. However, when there
hardly any entanglements left, due to the high plate velo
ties, the contribution from the friction between the first bu
layer and horizontally oriented grafted chain, called Rou
friction, is dominant. From physical arguments it is eas
seen that the stresssRousecorresponding to Rouse friction i
given by Ref.@9#

sxy
Rouse5zn

N

Ne
Vslip . ~19!

Here z is taken equal to the monomer frictionz1 if one
assumes that the interaction between the wall and the m
mers is equally strong. If this is not the case in practice o
needs an expression forz which takes into account the cha
acteristics of the wall. Since here we focus on t
entanglement-disentanglement transition, we will simp
takez5z1. If we add the two stress contributions, we obta
that the total shear stresssxy

tot which is

sxy
tot5

3ckBT

Nb2 K E
0

L

dsL~ t !ux~s,t !uy~s,t !L 1z1

N

Ne
Vslip .

~20!

When the chain is aligned with the wall, the first term va
ishes and we are left with a term increasing linearly w
Vslip . The expression we used for the stress is similar to t
used in Refs.@12,13#. In Ref. @3# the wall shear stress apa
from the Rouse contribution was simply taken to be prop
tional to the length of the tethered chain. We find that bo
definitions lead to the same curve, with a maximum for t
same value ofV̄P .

In Fig. 12 the dimensionless wall shear stresss̄xy
tot , de-

fined ass̄xy
tot5sxy

b /3kBTnc , is shown forNe55. There is a

y

n-

FIG. 12. The dimensionless stress is shown as a function of

plate velocityV̄p . It clearly shows that it attains a maximal valu

for V̄p50.005, which is well beyond the value ofV̄p at the onset of

slip V̄p
!50.0005. The dashed line represents the stress contribu

due to the entanglements, the solid line is the total stress w

includes the Rouse friction part, which becomes dominant whenV̄p

is large.
3-9
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JOHAN L. A. DUBBELDAM AND JAAP MOLENAAR PHYSICAL REVIEW E 67, 011803 ~2003!
maximum atV̄p50.005, whereas the transition region sta
at V̄p5V̄p

!50.0005. The fact that the maximum in the stre

is attained at values ofV̄p@V̄p
! can be explained as follows

When V̄p is gradually increased, the stress increases, s
the tethered chains will start to orientate in the flow. Incre
ing the plate velocity beyondVp

! , does not really change
this. The molecule is stretched, but still feels the constra
and therefore the stress continues to increase withV̄p . When
V̄p is sufficiently large to push the tethered chain paralle
the wall, the stress due to entanglements starts to decr
steeply. At the same time the Rouse stress begins to g
linearly with V̄p . This results in theS-shaped stress versu
plate velocity curve depicted in Fig. 12. From Fig. 8 it fo
lows immediately that plotting the stress as function of
slip velcity would lead to a similarS-shaped curve.

IV. CONCLUSIONS AND DISCUSSION

We proposed a self-consistent model to explain wall s
from a molecular point of view. The model contains tw
important relaxation mechanisms for grafted chains: C
and arm retraction. It was demonstrated that when the m
was evaluated via numerical simulations in a plane Coue
flow geometry for low to moderate grafting densities, it e
hibits a stick-slip transition, in agreement with experimen
This can be explained as a transition from arm retraction
CCR as the dominating relaxation mechanism for the te
ered chains. The velocity profile was also calculated a
shown to be nonlinear in the interfacial layer, whe
entanglement-disentanglement takes place.

The stress reaches a maximum as a function of the u
plate velocity. The maximum is attained at a value ofV̄p

which does not coincide withV̄p
! , but is much larger. This is

due to the fact that only for very large plate velocities t
bulk chains succeed in pushing the tethered chains parall
the wall. If this happens the stress in the tethered cha
squeezed against the wall increases linearly with the slip
locity of the bulk molecules sliding along. The resulting wa
shear stress versus slip velocity isS shaped. Such a non
monotonic slip wall may give rise to unstable behavior.
Refs.@11,16,26# it was shown that the so-called spurt inst
bility is perfectly described by such a slip law. However, t
law used there was introduced heuristically. The appro
that was taken here makes it possible to calculate the slip
starting from molecular data. This is essential for any sp
model to have predictive power.

The model developed here contains assumptions w
are to be relaxed in future work. In order for our model to
applicable in practice it is necessary to deal with polydisp
sity. This implies that one has to average over a distribut
of chains lengths. If the numerics can be improved upon i
in principle, feasible to perform numerical simulations f
different chain lengths and to obtain the slip velocity a
stress as averages of these simulations.

We should also remark that the effect of loops is n
glected. This can be justified, since it is far harder for a lo
to relax completely and therefore they do not contribute
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jumps in the velocity, but rather give an overall slowin
down of velocity of the fluid. Such an effect could also b
incorporated by putting it into the effective relaxation time
the tethered chains.

The model we considered is only two dimensional. Exte
sion to three dimensions is another refinement, which
would like to include. This would probably have an effect o
the simulations, but it is not expected to lead to any qual
tively different results, since the underlying entangleme
mechanism remains the same.

So far, we were only able to numerically integrate t
evolution equations of the dynamical stochastic system.
are currently investigating analytical aproximations, whi
would allow us to deduce how the important quantities, su
as the beginning of the transition region and the velocity
which the stress maximum is attained, depend on the
lecular parameters.

Furthermore, it is well known that the life time of
grafted chain is not infinite, since they debond from the so
surface or break. In fact, the population of the tethered cha
not constant, but a dynamical quantity: chains attach
detach continuously. It is a challenge to combine this bo
ing ~debonding! process with the present approach, sin
then a rather complete picture becomes available allow
for accurate calculation of slip laws for any polymer melt
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APPENDIX

One can rewrite Eqs.~16! after another differentiation in
the matrix form

S ẋ

ẏ

ż
D 5S 0 1 0

0 0 1

2
2u

e

212u e2

e2
2

3

e
D S x

y

z
D ,

wherex,y,z now stand forv1 ,v̇1 ,v̈1, respectively. The cor-
responding eigenvalue equation reads as

l31
3l2

e
1lF11u e2

e2 G1
2u

e
50, ~A1!

where we have written for simplicityu for u1. This third
order equation is easily solved and yields the following th
negative eigenvalues:

l152
1

e F112A22u e2

3
cosS f

3 D G , ~A2!

l252
1

e F112A22u e2

3
cosS f

3
1

2p

3 D G ,

3-10
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l352
1

e F112A22u e2

3
cosS f

3
2

2p

3 D G .
Heref is defined by

f5arccosF2A27~11u e2!2

4~22u e2!3 G . ~A3!

Equation~A2! are, to an excellent approximation, equal to

l152
u e

2
A2

3
cosS 1

3
arccosF2A27

32G D 522 u e,

l252
1

e F112A2

3
cosS 1

3
arccosF2A27

32G1
2p

3 D G
52

32A5

2e
,

l352
1

e F112A2

3
cosS 1

3
arccosF2A27

32G1
2p

3 D G
52

31A5

2e
. ~A4!

We can now write down the solution forv1(t) by impos-
ing the initial conditionsv1(0)5Vp , v̇1(0)52uX1(0),

v̈1(0)5@uX1(0)/e#2Vpu, which yields

v1~ t !5C1el1t1C2el2t1C3el3t, ~A5!

where C1 ,C2 ,C3 are functions of the eigenvalues and t
initial values and given by

C152
u2eVp2el2l3Vp2el2uX1~0!2el3uX1~0!

e~l12l2!~l12l3!
,

C252
2u1eVp2el1l3Vp1el1uX1~0!1el3uX1~0!

e~l12l2!~l22l3!
,

C352
2u2eVp2el1l2Vp2el1uX1~0!2el2uX1~0!

e~l1l22l1l32l2l31l3
2!

.

One can easily see thatC1 is of the order ofVp , up to an
order e correction, so thatv2(t)2v1(t) is almost equal to
Vp2v2(t), which shows that the shear rate is homogene
throughout the flow. The velocity of the first layer slow
down to zero exponentially with a typical relaxation rate
2 u e. The second layer is slowed down at the same rat
Vp/2,
01180
s

f
to

v2~ t !5
Vp

2
@11e2~2/e!t#1C1Fel1t2e2~2/e!t

21l1e G
1C2Fel2t2e2~2/e!t

21l2e G1C3Fel3t2e2~2/e!t

21l3e G .
~A6!

The important convective relaxation timetc is given by

tc5
1

2 u e
5

h0ANeb

6kBTt1n
5

h0ANe

2bz1n
. ~A7!

The caseu50 is simplest since then Eqs.~16! reduce to

e v̇11v15v2 ,

e v̇212v25v31v1 . ~A8!

Solving for v1 gives the following expression forv1(t),

v1~ t !5Vpe2t/e1
e2t/e

e E
0

t

et8/ev2~ t8!dt8. ~A9!

When Eq.~A9! is substituted in the evolution equation fo
v2, we obtain after differentiating one more time the diffe
ential equation forv2(t),

e v̈213v̇21
v2

e
5

Vp

e
, ~A10!

which is readily solved and gives

v2~ t !5Vp1A expF2
31A5

2e
tG1B expF2

32A5

2e
tG .
~A11!

The coefficientsA andB are determined byVp and the value
of the velocity in the first and second layer just beforeu
becomes zero,v1(0) andv2(0), respectively, as follows:

A5
v2~0!~11A5!1Vp~12A5!22v1~0!

2A5
,

B5
v2~0!~211A5!2Vp~11A5!12v1~0!

2A5
.

For v1 we have a similar expression as forv2,

v1~ t !5Vp1F 2A

11A5
2

2B

211A5
GexpF2

t

eG2
2A

11A5

3expF2
31A5

2e
tG1

2B

211A5
expF2

32A5

2e
tG .
~A12!

Equations~A11! and~A12! show that the velocity profile
jumps, almost instantaneously, back to the initial plug p
file.
3-11
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