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Self-consistent dynamics of wall slip
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A simple molecular model is studied to explain wall slip in a polymer melt. We consider a tube model for
tethered chains in which the most important relaxation mechanisms: convective constraint release and chain
stretching(retractior), are incorporated. Furthermore, we take the interactions between tethered chains and
bulk flow self-consistently into account. Numerical simulations show that our model exhibits an entanglement-
disentanglement transition, leading to a jump in the slip velocity which increases with the number of entangle-
ments and the grafting density. The wall shear stress is found to be a nonmonotonic function of the slip and
plate velocity, yielding the possibility of hysteresis and spurt instabilities. In a simplified version of the model
we show via an analytical approach that the stick-slip transition is asymmetrical: the transition from stick to
slip is much faster than the slip to stick transition. Our analysis reveals the existence of a dimensionless
parameter that determines the time scale of the dynamics for the slowing down of the bulk flow. The relative
rate at which relaxation of the tethered chains and slowing down of the bulk take place, seems to be quintes-
sential for the slip behavior of the melt.

DOI: 10.1103/PhysRevE.67.011803 PACS nunier61.25.Hq, 83.10.Mj, 83.10.Kn

I. INTRODUCTION which can be identified with théwall) slip velocity. When
the slip velocity increases beyond a certain value, we enter
The so-called no-slip boundary condition has been scrutithe second regime in which the tethered molecules no longer
nized since a long time. Molecular dynamics simulatiphls  have a spherical shape, but are stretched to a degree at which
and experiments have shown that for Newtonian fluids thehe friction scales linearly witiN, so-called Rouse friction.
no-slip condition is in general satisfied. However, for poly- Since this friction force is much weaker than the Stokes fric-
mer flows(melts it has been known for many years that slip tion, the molecule retracts, after which it will stretch again.
may occur if a polymer melt flows along a solid surfd2é  This motion is callecbreathingand the range of velocities
In 1979 de Gennes3] argued that slippage in polymer flows for which this occurs is designated as tmarginal regime
is due to the high viscosity of polymeric fluids. If long poly- Breathing implies that the time-averaged stress is constant
mer chains are grafted on a solid interface, the slip is greatlyor a range of velocities. The instantaneous stress is oscillat-
reduced, but does not disappédt. In this case one has a ing, reaching a maximum when the tethered and bulk chains
transition from stick to slip boundary conditions. It was re- are maximally entangled and a minimum when the entangle-
alized that the mechanism governing the change from sticknents are released. When the velocity near the wall increases
to slip boundary conditions could be found in an still more, we reach the third regime in which the tethered
entanglement-disentanglement transition. molecule is completely disentangled from the melt and al-
Many investigations of different aspects of this transitionmost permanently in a stretched state so that the friction is
have been performed. Some of them used highly complicateRouse-like. In the third regime, the stress near the wall in-
models for the polymer flow and most of them consider thecreases again monotonically with the slip velocity.
slip velocity as giver{4—6]. Our goal is to provide a self- If instead of the flow velocity near the wall, the shear
consistent physical picture of wall slip for the case in whichstress is considered as the independent quantity one finds the
the slip is caused by disentanglement of chains grafted on thfellowing. When the wall shear stress is very small, there
wall from the polymers in the bulk. We will restrict ourselves will be a negligible slip velocity. This slip velocity increases
to polymer melts, for these are of most interest for practicaimonotonically with the shear stress, until a critical value of
purposes. the shear stress is reached. When the stress is increased be-
The entanglement-disentanglement mechanism, as prgond this value, a large increase in the slip velocity is ob-
posed in Refs[3,4], predicts that there are essentially threeserved after which the slip velocity will again increase
different slip regimes. In the first regime the velocity near theslowly with wall shear stress.
wall is very small, so that the tethered molecules will en- The theory behind the mechanism of slip and some modi-
tangle with the flow and have a more or less random spherified versions thereof4—6] have been experimentally con-
cal configuration. The friction between the tethered mol-firmed in Refs[7-9]. In these papers the wall slip velocity
ecules and the melt will be Stokes-like, that is, it ishas been directly measured in the vicinity of the wall. It
proportional to the radius of gyration of the attached mol-displays a transition from low slip to high slip as a function
ecule, which depends linearly on the square root of the poef the apparent shear rate. However, for grafting densities for
lymerization indexN. In this regime, the wall shear stress which the theory of Ref.3] should apply, the measured tran-
increases monotonically with the velocity near the wall,sition is much less steep than predicfdyl Only for grafting
densities more than ten to hundred times higher than the
critical grafting density, a steep transition from no slip to slip
*FAX: +31-40-244-2489. Email address: jdubbeld@win.tue.nl is observed.
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A very successful model for the flow of entangled poly-
mers is a modified version of the Doi Edwards theory that

barrel was put forward by Mead, Larson, and O&#]. It describes
entangled polymers which can reptate, retract, stretch, and
V) — die ! extrudate show contour length fluctuations. Furthermore, the relaxation

T e—— v ww—— mechanism which is crucial for intermediate times in shear
flow systems, the so-called convective constraint release
(CCR) mechanism, was taken into account. The model was
coined contour variable model and consists of a set of partial
differential equations for the stress tensor, the contour length,
FIG. 1. A sketch of the setup for an extrusion experiment. Theand orientation of the polymers. Very recently this contour
pulsating output is due to spurt. The undulations superposed on theariable model has been applied to model wall §0j2].
pulsations indicate sharkskin. Since we are interested in the stick-slip transition and the
physical mechanism behind it, we concentrate on the dynam-
ics of the grafted chains and their interactions with the bulk.
¥\Ie therefore solve the equations of motion of the grafted

extrusion experiment as sketched in Fig. 1, the throughput i hains numerically. which amounts to solving a svstem of
measured as a function of the pressure difference or vicE . Y . 9 y
Stochastic differential equations.

versa. Increasing the piston speed, which amounts to increas- Recently, this approach of handling polymer flows has

ing the wall she_ar stress, gives rise(smirfacé instabilities, also been successfully applied to the single- and double-step
such assharkskin spurt andgross melt fractureThe pres- gy ain casd15]. The model presented here is of a similar

sure often shows an intermediate rggi_me_of large oscillation§1ature as the one employed in REFS], but adapted to the
u;ually denoted by spurt. Sharkskin .|nd|cates small surfacg,se of tethered polymer chains in a bulk environment. Fur-
distortions and gross melt fracture is commonly used foknermore, our description contains all ingredients that were
large distortions which not merely affect the surface, but alsgiso present in Ref§12,14), but it additionally provides us
the volume of the extrudate. In Refd.0,11 it was demon-  with a clear physical picture behind the slip mechanism.
strated qualitatively that some of these instabilities may The entanglements between tethered and bulk chains give
originate from a stick-slip phase transition. Their descriptionrise to constraints for the tethered chains. These constraints
in terms of Ginzburg-Landau theory requires a nonmonoare depicted as points, which form a grid through which the
tonic relation between the slip velocity and the wall sheartethered chain cannot pass. The entangled grafted chain finds
stress, which was simply assumed. Here we show how thigs way by performing a random walk, caused by thermal
slip velocity versus shear stress relation depends on the mdluctuations and interactions with the bulk molecules. We
lecular parameters, and that a nonmonotonic relation beemark that the rate of entanglement between grafted and
tween shear stress and slip velocity can actually occur.  nongrafted molecules is determined by two competing
Although the entanglement-disentanglement phenomenomechanisms.
gives a good qualitative description of the fact that polymer (1) The bulk molecules passing tend to squeeze the
systems exhibit a nonzero slip velocity at the wall, the timegrafted chains against the wall. If the chains would not be
dependent dynamics of the transition is usually not considsubject to random forces, the chains would just align with the
ered. Theories that do describe the dynamics of polymeriflow and in their final equilibrium state the molecules would
fluids are reptation theories in which stresses are calculateall be maximally stretched and lying along the wall.
for a prescribed shear rate. In stick-slip situations the flow is (2) Since there are Brownian forces, the chains are con-
not constant in time, but changes due to entanglements bé&nuously changing there conformation, thereby creating new
tween tethered and bulk chains, which suggests that one caar annihilating existing entanglements with the bulk poly-
not use a prescribed shear rate description. One way to ovemers. These volatile conformational changes are often called
come these difficulties is to separate the flow region into twacontour length fluctuations when the fluctuations are small,
parts: a layer near the wall, the so-called interfacial layerpr breathing modes, when the tube is really renewed.
and a bulk layer which comprises all the polymers which do Thus, we may summarize as follows. In our model the
not belong to the interfacial layer. This method has beennteractions between the bulk molecules in the flow and the
pursued in Refs[12,13, and gives results that agree rather grafted chains are accounted for in a self-consistent way, that
well with experiments. is, the velocity profile of the bulk molecules is slowed down
Here we follow a complementary approach, based on thdue to entanglements between grafted and bulk chains and
full dynamics of the grafted chains, which takes the influencesimultaneously the attached polymer chains are dragged
of the grafted chains on the bulk flow into account in a self-along with the flow. This will lead to a velocity profile in
consistent way. This means that we have to consider both thehich two regions can be distinguished. In the layer near the
drag force of the bulk on the grafted chains and the action ofvall, the interfacial layer, the velocity rapidly decreases,
the grafted molecules on the flofwelocity) of the polymers  whereas in the remaining region, the bulk region, the shear
in the bulk. For the movement of the grafted chains we needate is constant. A similar division in two layers was also
to invoke molecular theories describing entangled polymeperformed in Refs[12,13, but there the thickness of the
systems. boundary layer did not depend on the shear rate, but was

In most experiments evidence of slip is indirect. In an
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|| J— layer is not given beforehand, but is one of the unknowns to
be determined in a self-consistent wap—21].
e o o o o s s e The grafted chains are supposed to be distributed along

the wall with average density. The interaction between
different grafted chains is neglected, which implies that the
=7 grafting concentration is sufficiently low, i.e.yR§<1,

e 22 where R, denotes the radius of gyration of the grafted
\‘. « o ol chains. This situation is often referred to as the mushroom
/ regime. Later on we shall apply the model also for higher
grafting densities, since experiments suggest that the interac-

__FIG. 2. Sketch of the flow of the grid of constraints. Due 10 i, hetween grafted chains can still be neglected, for densi-
interactions between the grafted chains and the bulk molecules, th[?es UD to more than ten times the critical densitv= 1/R2
velocity is smallest near the wall. In the self-consistent approac P = 1Rg

not only the interactions of the bulk polymers on the grafted chain 9. . - .
are taken into account, but also the reaction of the bulk. The inter- Due to its thermal energy or volatility a tethered chain

actions between grafted chains and bulk molecules are local at t#ill find its way in the dynamic network of the bulk mol-
entanglement points. This establishes a similar restricted movemefCUl€S passing by. Since a grafted chain cannot freely reptate,
of the tethered chain as the depicted tube. its motion may be referred to as breathing, like in star-shaped

polymers[24]. The grafted chains stretch and contract in a

. . breathing fashion, the motion just being restricted by the
simply a parameter. Here we calculate the thickness of the , .
) ; - ) o constraints imposed by the bulk molecules and the wall.
interfacial layer and the velocity profile within this layer self-

consistently, which shows that they depend on the shear ratThese constraints make the movement of the grafted chain
We ShOL)Jlid further stress that t%/e mpodel does not re uirgredominantly take place in a tubelike regidr], of which
dUMShe end is constantly destroyed and recreated in an

the slip veloc_|ty to be prescribed. The slip velocity is OIEEf'neo'entangIement-disentanglement process, such that after some
as the velocity of that layer of the bulk polymers near thetime an entirely new tube is formd@3]
wall, which is the first layer not entangled with the grafted y '

chains in the interfacial layer. It follows from self-consistent To study the dynamics of the entanglement-
. . Vlayer. disentanglement process, we need to represent the bulk mol-
simulations that the slip velocity depends on the upper plat

velocity in plane Couette flow and a few molecular aram_%cules such that simulations can be done in a reasonable time
y In p P span. To that end we introduce the following model. The

eters. We observe that the velocity exhibits a jump as a funCﬂowing bulk molecules, which act as potential entanglement

tion of the plate velocity, which is more pronounced when_". for th hered chai d by ob |
the polymerization indei of the grafted chains increases or pomtg or the tethered chains, are r_epresente_ y obstacles on
a lattice. To reduce the model to its essentials, we assume

when_the distance between e_:ntgnglemelgsiecrea}ses. We_ that the breathing motion of a tethered chain is restricted to
also find that the onset of slip increases approximately lin;

. . : . two-dimensional motion taking place in the plane perpen-
early W'th the grafting denSIIy/, Wh'Ch. has also been pre- dicular to the wall and parallel to the flow direction. The
dicted in Ref.[5] and confirmed experimentally.

Moreover. the relation between stress and slio velocit isituation is sketched is Fig. 2. Initially the grid of obstacles
shown to be’a nonmonotonic function. An in redpient whi?:/hﬁn this plane is square with lattice parameterThe grid
' 9 'points move parallel to the wall. Grid points in the same

when coupled to the momentum equation for the bulk ﬂOW'horizontal layer have equal velocities, so that they keep a

caq_rf]ci)sr S;grgrpilse gil\\//iﬁer:js?n:g Egﬁrsgggiéﬁsstaﬁ:ﬁﬂ' following cpnstant distanca. It is .important to realize that the veloci-
section we will give a detailed description ;)f the model ThetIes of t_he Iaye_rs are different and_have to be calculated._
numerical results are presented in Sec. Ill and the cbncl _ The interaction b_etween_ the grid and th_e gra_fted chains
sions and discussion are given in Sec I'V Yakes place_at localized points yvhere the grid points and the

R grafted chains touch; these points are called entanglements.
Since the number of entanglements increases when the dis-
tance to the wall decreases, the velocity is rapidly decreasing
in the vicinity of the wall.

In this paper we study the interaction between chains at- When the obstacles are moving parallel to the wall, they
tached to the wall and flowing bulk chains. Since the inter-drag the tethered chains that are entangled with one or more
action takes place in a layer near the wall whose thickness igyers along. If a tethered chain is entangled with a layer, it
maximally equal to the radius of gyratidm the limit of no  will slow down the layer’s velocity, since there is mutual
flow), we may choose the situation further away from theinteraction between the bulk layers and grafted chains, that
wall as simple as possible. That is why we study plane Couis, the grafted chains stretch and the bulk layers slow down.
ette flow. It has the additional advantage that experimentals the chains stretch, stress is built up in the chain, which is
data are available for this cafg-9]. In Fig. 2 a sketciinot  only relaxed when the chain retreats from the layer and loses
on scale of the velocity profile in the boundary layer is contact with it. One reason for losing entanglements is that
presented. It should be realized that in steady state conditioriee constraints are simply convected away. This process is
the flow has a linear velocity profile in the bulk, but not in referred to as CCR. If the tethered chains would be passive
the interfacial layer near the wall. The velocity profile in this ropes, this would eventually result in a rope configuration

II. DESCRIPTION OF THE MODEL
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without any entanglements between bulk and grafted mol-

ecules. This amounts to a configuration in which the rope is

squeezed against the wall. In this case the interaction be-
tween the bulk and attached chains is only(Rpuse fric-

tion, which is much smaller than the entanglement interac-

tion. The passive rope scenario sketched above is in practice
counteracted by the volatility of the grafted chains.

In our model we describe the grafted chains by bead-
spring or so-called Rouse chains. If such a grafted chain gets
entangled with one or more moving layers, stress is induced
in the chain. Several stress relaxation mechanisms now be-
come relevant. On short time scales the beads are redistrib-
uted, such that the induced stress is equally distributed
among the tube segments. The length fluctuations of chains
occur on the same time scalRouse time

Reorientation of the chains happens on a much longer
time scale. This can occur by the breathing process described
above, CCR, or simply constraint relea@@R). Constraint
release is the process that is due to reptation of the bulk
chains: the constraints on the tethered chain disappear, which
can therefore relaj6]. This process is particularly important
when the environment consists of chains that are relatively
short. Since the length of a grafted chain is usually consid-
erably shorter than the length of the bulk chains, due to the FIG. 3. Detail of the chain conformation. The obstacleXat
fact that a single grafted chain may be in contact with theindicated by the large circle interacts with the beads,a@ndx,, 1
wall at several places, this relaxation process can be nedy streching the spring that connects them. At the same time the
glected in our considerations. In the model presented belowelocity of the obstacle is reduced due to the increased tension in
the most relaxation mechanisms for grafted chains, breattthe spring which is exerting a reaction force on the obstacle.
ing, and CCR, are accounted for. The slip law we are aiming
at is mostly determined by the competition between CCR  The first bead is attached to the walbat= (x;,0). Modi-
and breathing relaxation mechanisms. fication of Eq.(1) for the first and last beads is straightfor-

After this general description of the model we will now Ward_ Equanor(l) 0n|y app”es When the Chain has no inter-
focus on the evolution equations for the grafted chains.  action with a layer. In the vicinity of an entanglement the

chain is dragged along with the bulk flow by the obstacles.
A. Dynamics of the tethered chains This interaction with a layer is highly local. The influence of

We consider a chain attached to the wall consistingyof the entanglement is felt by the rest of the chain indirectly,

beads and connected by~ 1 springs. With exception of the namely, through their interactions with the neighboring

first and last beads, and the beads adjacent to an entangf€2ds: This implies that Eq1) is only valid for the beads
ment, they satisfy the Langevin equation not adjacent to an obstacle. These beads satisfy an adjusted

equation. In Fig. 3, we show a detail of the situation in which
IXn a grid point with coordinate vectot; hits the chain between
1 =KD+ 2D+ X0 -1 () = 2% (D) ]+ o (1), two beads with coordinates, andx,,,,. The force exerted
on this bead by the spring betwegp and x,_4 is simply
n=2,...N—1, (1)  given byk(X,_1—Xp).

The force stemming from the interaction between rtte
where{; is the friction coefficient of a monomex,(t) de- and (h+1)th bead is mediated by the spring, which is bent
scribes the position of thenth bead. In view of the along an obstacl¥;, and it is given byk(l;+I;.1). So, the
fluctuation-dissipation theorem the spring constlrns re-  force is proportional to the total length of the spring which
lated to the temperature by consists of two partg andl;, ; as is indicated in Fig. 3. The

force between thath and (+ 1)th bead points in the direc-

3kgT tion of X;—x, . The total forceF, felt by thenth bead reads
k=—5—. @ as
b
Here b denotes the Kuhn length arfg(t) is the Brownian X
force, whose componenf§(t) satisfy F = K(x_1— ) +K(li+1121) iI Xn 3)
. ) . i
<fln(t)>:01 <f|n(t1)flm(t2)>:2kBT§15(t1_t2)5nm5ijy
wherei,j stand forx ory. For the force on beadnh(+ 1) we similarly find
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2 and 4. LayeP is farthest away from the lower wall and its
velocity is prescribed. The velocity profile, i.e., the layer
velocitiesv; ,i=1, ... P—1, are obtained from the simula-
tions. Let us first consider a situation without chains grafted
on the wall. The interaction between two neighboring layers
takes place via molecular friction mostly due to entangle-
ments. Its strength is measured by the viscosityln this
paper we taken constant, but shear thinning via a shear
dependent viscosity can easily be incorporated in the simu-
lations. The dimensionful equation of motion for layers

FIG. 4. Schematic representation of plane Couette flow. There2, ... P—1is
are two different regions, the interfacial layer and the bulk layers.

) ) ; do;
The thickness of the interfacial layer depends on the plate veloc- A—— = — (20— o1 — D )
ity Vi, and is largestof the order of the gyration radiyswhen the T 7201~ 0i 417 0i-1), ®
upper plate is not moving at all, so whafy=0.
Xi=Xpt1 wherea is the distance between two layers gnis the mass

Foi1=k(Xni2=Xns) Fk(i+1ivg) (4)  density of the melt. The first layer has to be treated sepa-
rately, since it interacts vigRouse friction with the wall

Beads adjacent to an entanglement obey evolution equatid4,9]. For layer one we have

(1) with the term proportional td replaced by, or F, ;1

depending on the position of the bead relative to the en-

i1

tanglement point. dv,
If we nondimensionalize our equations and use as unit of pa—gr = m(va=v1)— Fw(vy). ©
length the Kuhn lengtiv and as unit of timer defined by
b%Z,

(5)  The friction forceF,, depends o, and the material prop-
erties. AsF,y, is monotonically increasing, the system given
by Eqgs.(8) and(9) has a unique steady state that is linear in
the distanca from the wall. The system converges to the

X — o o o steady state with a factor approximately given by exp

—=Xp11TXn_1—2X, T Gp(1), (6) (—7lpa). A special case is the so-called plug flow, where

at Fw=0, with steady state;=vp,i=1,... P—1. Another

extreme case is obtained wheéw, is much larger than the

T 3keT

we can recast Eq1) into the form

where shear forces. In this casg =0 andv;= (i —1/P—1)vp for
%t i>1.
X = b =—, (7) The next modeling step is the representation of one or
T

more layers interacting with a grafted chain. The chain is
are dimensionless quantities. Note that rrm/N2, where attached to the yvall &, say. The chain will create its first
entanglement with layer 1 at entanglement p&int Its sec-

7r IS the Rouse relaxation time of the chain. The choice of ond entanalement at positiof is probably with laver 2 but
as unit of time leads to equations with a very convenient 9 positiofy is p y Yer 2,

form. The components of the dimensionless random forceg might also happen that the chain Crosses Iayer_l again from
P — i above. The next entanglement poky is situated in one of
Gn(t) now satisfy the layers 1, 2, or 3. So, if a grafted chain hMsentangle-
- B - o ments, its conformation or tube is characterized Xyi
(GL(1))=0, (Gl (t))G)(t,))= §5(t1—t2)5mn5ij . =1,. . M, entanglement poin'ts, which lie scattergd over
the grid layers near the wall. Given tixg, the dynamics of
The nondimensionalization of the equations for the beadthe cham,_ thatis, of a.l" Its _consjututmg beads are governed by
e equations of motion given in Sec Il A. Rearrangement of

gdjacent to an entgnglemgnt point wh|ch'conla;rorl Fr1 the beads during a time step in the calculation may cause the
is analogous. Having obtained the evolution equations of th%reation of an extra entanglemext, ., or annihilation of

tethered chains we now turn to their influence on the velocity,

L the last entanglemenx,, .
of the chains in the polymer bulk. If two entanglementX; andX;, ; are in neighboring lay-

ers, these layers have interaction via the part of the grafted
chain betweerX; andX; . This part forms a linear spring

We derive the equation of motion for the grid layers. WebetweenX; and X;, ; with spring constank; and therefore
assume the flow to be described as a system which consistiise expression fok; which is valid for a Rouse chain in a
of P layers moving in parallel. This is also depicted in Figs.tube[22] applies

B. Dynamics of the bulk chains
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F
L] L] L] L [ ] [ ] [ ] L L] L] L] 'E.'U_ = 1r'P
L] L] L] L L] L] L] L] - L] e Uz

* & & o' 8 ® 8 8 = ® #l

FIG. 6. Sketch of the three layered system. The plate velocity
V,, is transmitted entirely to the third layer and there is only one
entanglement, between the grafted chains and the first layer of the

FIG. 5. Picture of a tethered chain which has interaction withPulk molecules.
four grid points. One of the more intricate configurations that can
occur during the simulation process: the chain passes through the
second layer into the third layer and subsequently enters the second In this subsection we make some simplifying assumptions
layer again from the above. in order to obtain an analytical estimate for one of the typical
time scales in the problem. It is not supposed to explain the
KT numerical simulations of the full system which will be dis-

k= B (100  cussed later.
ij2 We consider the configuration with three grid layers as
sketched in Fig. 6. The third layer has a prescribed velocity
where N; is the number of beads betweef) and X, ;. v3 equal to the plate velocity,,. Moreover, in this example
From the literaturg 22,24 we know thata=N.b, where there is a permanent entanglemeéft with layer 1. We as-
N, is the average value ®; for a chain in equilibrium. The sume that the particular chain we consider represents
parametersb andNg depend on the type and density of the chains per unit area grafted on the wall of whichhave an
polymer and are known for many systems. The bookkeepingntanglement with layer 1. In this particular example, i
of the entanglementX; is important in our calculations. The which all chains are assumed to be entangled with the f|rst
effect of neighboring layers being connected by parts of dayer, we haver=rv;. If not all grafted chains would interact
grafted chain is most easily explained if we consider awith the first layer,»;<v, and v—v, tethered chains per
grafted chain for which the distance of; from the wall  unit area would be squeezed against the wall. In readjty
increases monotonically with If X;=(X; Y) thenY;=ja  will be, after time averaging, a function &f; and an out-
in thls special case and the equatlon of motlon of the layecome of the simulations. For simplicity, we tak@ here to
j=2,...M—=1,is be known in advance and constant.
The dimensionful equations for the velocities and v,
do; for layers one and two are
pa—- dt —7(2vj=vj41—vj-1) TK|(Xj 11— X))

Stick-slip transition in a system with three layers

dl)]_

—k (X —X ) (11) dt —77(U2 vl) klvl( XO)_FW(Ul)r
(i AN =1

dv

For layerM, which is farthest away from the wall, we have dt = 9(vg+v,—205). (14)

ad;}_t"" =—9(2om—vms1—Om—-1)— KXy —Xum—1) The first equation shows that the velocity of the first layer is

enhanced as a consequence of viscous friction between the
(12 first and second layer and is reduced due to entanglements
] with the grafted chain and friction with the wafl,,. The
and for the first layer second equation expresses that layer 2 experiences viscous
friction from its two neighboring layers. In the steady state,
dv, the velocityv, of layer 2 will be equal to the average of
pa——=—7n(v1=v2) T Ka(Xz=Xq) =Ky (X1= Xo) andus. ?
Taking Fy=0 for simplicity, the dimensionless velocities
—Fu(vy). (13 v1(t) andv,(t) satisfy

We emphasize that in reality the bookkeeping is much more dv, 77 — —  KiPvi—

intricate. Figure 5 shows that it may happen that two neigh- ﬁ: _z(vz_vl)_ pa X1,

boring layers are connected by two different parts of the pa

same grafted chain. To elucidate the basic principles of the — (15
present model we show how it works in an extremely simple L ﬂ(v_ +0,—20,)

situation. dt pa2 ° ' T
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v, approaches the averagewfandV,, which is justVv,/2,

sincev, goes to zero and;=V, for all times. The relax-
1 ation time 7. is given by
[}

IR

__ 1 7@ :770\/N—e 17
\ ¢ 20, 6kgTriv 2b&v’

The time-scaler, at which the velocity of the layers in the

S, Vg bulk slows down is a long time scale, due to the smallness of
. —== €6,. It is also shown in the Appendix, that when the en-
I tanglement is released, the plug flow situation is reestab-
| lished almost immediately, and the entire process repeats it-
self from the beginning. This artificial example clearly shows

\ that in a stick-slip situation the transition from stick to slip is
0.2 \

much faster—almost instantaneous—than the transition from
‘\

slip to stick, which occurs on the time-scatg. Numerical
simulations suggest that these two time scales are also

present in the full system, and crucial for the occurence of a
stick-slip transition.

10% ¢

FIG. 7. The evolution ofdimensionlessvelocitiesv, andv, Our aim is to find out how the slip velocity depends on
for two different values ok ¢ plotted as a function ofdimension- V. The slip velocity is defined here as the average speed of
less time t. For the dashed curvesg=10"* and the solid curves the layer closest to the wall that never has entanglements
represent the caseg=10"°. In both cases/,=0.01. with grafted chains. We performed numerical simulations by

integrating the model equations supplemented with suitable
This system of differential equations can be recast into &oundary conditions. For convenience we took the spring

simple form by introducing the dimensionless parameters constantk;, given by expressiori10), equal to its equilib-
=pNb?/ 7 and 6,=3kgT?v,/pN3%3. Dropping the

bars and denoting differentiation with respectttdy a dot
yields

I1l. SIMULATION RESULTS

rium value XgT/Nb2. This amounts to averaging the force

exerted on the bulk layer over the equilibration time, which

is reasonable since the entanglements generally persist much

longer than the equilibration time of the chain segm¢g2H.

. Where possible, the parameter values were taken in accor-

€V1=V,— U1~ 016X, dance with Ref[9], in which experiments performed on a
polydimethylsiloxane(PDMS) melt are described. We con-

) sider a configuration in which the distan&ebetween the
€vp=Vptv—20,. (18 two plates is 1Qum. The typical length of a Kuhn segment

is b=10 A. Furthermore, we take the number of monomers
The entanglement-disentanglement transition turns out td! of a chain attached to the wall fixed and equal to 100 in

be a matter of scales. The parametés very small, typically ~order to be able to do calculations within a reasonable time

of the order of 10'1—10"12 whereas6, is of order 1§  span. The average entanglement lerdthis set equal to 10
—10°, at an entanglement density equal to the critical

or 5 in our simulations, which fixes the layer distance since
grafting densityycz (1/R(2))(1/N b2) This |mp||es that Eqs a= \/N_Gb The temperatur§ is of the order of 300 K, which
(16) represent a singularly perturbed system. Since Eds.

implies a timer of the order ofus, which is in agreement
are linear, the system can be explicitly solved as is done iMVith Ref.[25]. The parameted ¢ will be varied between

the Appendix. Here we will make some qualitative remarks10 “ and 107 which corresponds to changing the grafting
about the system defined by Eq&l6) and graphically —density fromy=0.1v. to 100 times the critical density, .

present the solution. In Fig. 8, a logarithmic plot of the dimensionless slip

There are two extreme cases. In the first case all theelocity V is presented as a function of tbgimensionless
grafted chains reach the first layer, 80= 6,2, Or equiva- \

plate velocityV,,. It displays the three slip velocity regimes
lently v,=v. In the other extreme case there are no entang|

. i . €hat were expected. For smaﬁp the slope of the curve is
ments with the obstacles in the first layer,iscand therefore tant. Th lue o7 f hich the s tarts 1o i
6, vanishes. This leads again to the linear velocity profile, a&0nStant. 'he vaiue oF, for which the slope starts 1o in-
discussed before. crease is denoted by; . For V>V the slope has initially

|f, for illustrative purposesﬂl in Eq (16) is taken con- a hlgher value. This region is referred to as the transition
stant in time and equal t6,,, we find that the velocity in  region. For very large values df; the slope approaches one.
the first and second layer is decreasing with a typical relaxThe transition is only mild and not very sharp in contrast
ation timer.. The solution is shown in Fig. 7 and shows thatwith the predictions in Ref[3]. From experiments it is
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FIG. 8. Plot of the slip velocity as a function of the upper plate ~ FIG. 10. The slip velocity shown as a function of the upper plate
velocityvp fOr €6may=10"7 (a), €60,2=108 (b), €0na=1075 (), velocity V,, for fixed e6,,=10"°, but for different values oN,.
and €f,,=10"% (d). The beginning of the transition region in- The dashed curve correspondsNg=10 and the solid one tbl,
creases with increasingd,., in agreement with experiment and the =5. The transition folN.=5 clearly is much steeper than fbl,
predictions in Ref[3]. Also the transition is more pronounced for = 10.
larger values ofef,,,,, which has also been observed experimen-

tally. Refs. [7] and [9] and were predicted qualitatively by de

Gennes in Ref[3].
known [9] that the transition depends on the density of the To find the dependence on the number of entanglements
grafted chains and the number of entanglements. In fact, fowe changed the value df, to N.=5, which corresponds to
densitiesv~ v, no sharp transition is observed experimen-enhancing the number of entanglements. The numerical re-
tally, but only a mild transition comparable to oy&d. Only  sults in this case, together with tid,=10 result for com-
when the densities are increased well beyepd say 10 to  parison, are depicted in Fig. 10. It shows that the transition
100 timesy, the transition is very sharp, almost vertical. becomes sharper with decreasidg values. From the simu-

The data of Fig. 8 can also be presented by looking at théytions it can be inferred that a/,=V; the relaxation

so-called extrapolation length, defined byl=VD/(Vy  echanism for the tethered chains has changed. In Vet
—Vs) . We see from Fig. 9, that théD versusV, Curveé  gesignates the value of the plate velocity above which CCR

exhibits a crossover from a practically constant to an apjs the dominating relaxation mechanism of the tethered

proxw_nately linearly increasing regime. The crossoverin t.hechains. For plate velocities smaller thgg, the bulk flow is
velocity andl/D was also observed in the experiments in ;
slowed down so much that the constraints are no longer re-

moved from the tethered chain by CCR, and therefore the

10° other relaxation mechanism, arm retraction, becomes domi-
nant.

102 Considering the grafted chain conformations and the ve-
locity profile of the grid elucidates the processes that take
place if one increases the plate velocity. In Fig. 11 two chain

10 conformations and two velocity profiles are depicted for two

~[Q different values oV,. Chain(a) corresponds t&/,=0.005
1 and (b) to V,=0.001. Since the bulk flow tries to drag the
grafted chains along, there will always be a part of the chain
- (a) nearX, that is squeezed between the wall and_the first layer.
0 This part of the chain will be longer for high&f,,, which
(b) agrees with Fig. 11. The tail of the chain can escape the
1072 (¢ dragging of the grid by arm retraction and subsequently tube
10-8 10-6 10-4 10-2 renewal or breathing. Precisely this process is displayed in

Vatip Fig. 11. Since the drag is stronger for higher valued/pf
chain(a) has a smaller tail which point upwards than chain
(b). The consequences for the velocity profile are that there is
less slowing down for chaifa) than for chain(b), since there
are fewer entanglements fa) than for(b). Also the veloc-

ity profile for (b) shows that the velocity decreases faster
closer to the wall.

FIG. 9. The extrapolation lengthiD as a function of the slip
velocity Vslip for three different values oé6,,,,. Curve (a) corre-
sponds t0€6,=10"5, (0) 10 €0,=10"°, and (c) t0 €fpmay
=10*. The sudden increase G_al‘snp is most clearly present for
€0max=10"%, which has the largest grafting density.
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FIG. 12. The dimensionless stress is shown as a function of the
plate velocityvp. It clearly shows that it attains a maximal value
for V,=0.005, which is well beyond the value W, at the onset of
slip V:):0.000S. The dashed line represents the stress contribution
due to the entanglements, the solid line is the total stress which
includes the Rouse friction part, which becomes dominant vﬁben
is large.

ciated with the entanglements. However, when there are
hardly any entanglements left, due to the high plate veloci-
ties, the contribution from the friction between the first bulk
layer and horizontally oriented grafted chain, called Rouse-
g 10 5 20 25 friction, is dominant. From physical arguments it is easily

T seen that the stregg?°“*®corresponding to Rouse friction is
given by Ref[9]

FIG. 11. Two chain conformations and velocity profiles for two
different values 01’\7p and fixed valﬂes fore O, =10"° and N, R N
=5. Configuration(a) corresponds t&/,=0.005 andb) represents Ux;use: gVN_eVinp- (19
V,=0.001. The chains both have a part which is approximately
horizontal and a tail that is entangled with the bulk which pointsHere ¢ is taken equal to the monomer frictiofy if one
upwards. The velocity profiléa) corresponds nearly to plug flow, assumes that the interaction between the wall and the mono-
since the interfacial layer is very small. The velocity profit®  mers is equally strong. If this is not the case in practice one
rgvgals that the velocity tends to zero over an interfacial layer conpeeds an expression fgrwhich takes into account the char-
sisting of a few bulk layers. acteristics of the wall. Since here we focus on the

entanglement-disentanglement transition, we will simply

Another important qua_mtity is the wall shear str(_ess. It Cantakeg ={,. If we add the two stress contributions, we obtain
be calculated by employing the Kirkwood expression to Cal'that the total shear streséf’; which is

culate the stress in the chains attached to the (22l

3ckgT/ (L il deSL(t)u (s,t)uy(s,t) ) +¢ EV i
O_)e(;tan%t): T <jo dsL(t)uy(s,t)uy(s,t) ), (18 Oxy™ N b2 0 x(S,Uy(S, lNe slip -
(20)

wherec is the number of polymers per unit volumie,the  \yhen the chain is aligned with the wall, the first term van-
length of the tube andi,(s,t),u,(s,t) denote thex andy  ishes and we are left with a term increasing linearly with
components of the vector tangent at the tube at pos#tiah v/ The expression we used for the stress is similar to that
timet. The contour length coordinasds zero at the walland |, in Refs[12,13. In Ref.[3] the wall shear stress apart
L at the end of the chain. There is another contribution to thg;,m the Rouse contribution was simply taken to be propor-
stress besides that given in H38). At high plate velocities  iona 1o the length of the tethered chain. We find that both

the grafted chains are dragged along with the flow and orienfefinitions lead to the same curve, with a maximum for the
parallel to the wall. Nevertheless, they experience friction o
due to the bulk chains that flow along, although there are ng2Mme \{alue OVp. ] ) —at

entanglements. Under entanglement conditions, the latter N Fig. 12 the dimensionless wall shear streé%, de-

stress contribution is negligible compared to the stress assfined as;txc;t=a§y/3kBTvc, is shown forN.=5. There is a
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maximum atV,=0.005, whereas the transition region starts/umps in the velocity, but rather give an overall slowing

ath=V;=0.0005. The fact that the maximum in the stressdoWwn of velocity of the fluid. Such an effect could also be

) . — = . incorporated by putting it into the effective relaxation time of
is attained at values of >V, can be explained as follows. iha tethered chains.

WhenV, is gradually increased, the stress increases, since The model we considered is only two dimensional. Exten-
the tethered chains will start to orientate in the flow. Increassion to three dimensions is another refinement, which we
ing the plate velocity beyond/;, does not really change would like to include. This would probably have an effect on

this. The molecule is stretched, but still feels the constraintshe simulations, but it is not expected to lead to any qualita-

and therefore the stress continues to increaserthWhen tively different results, since the underlying entanglement

V, is sufficiently large to push the tethered chain parallel tgmechanism remains the same.

the wall, the stress due to entanglements starts to decrease >° _far, we were only able to _numencally Integrate the
steeply. At the same time the Rouse stress begins to groﬁ,volutlon equations of the dynamical stochastic system. We

. L= . . are currently investigating analytical aproximations, which
linearly with V,. This results in theS-shaped stress versus y gating y P

lat locit devicted in Fig. 12. E Fia 8 it fol would allow us to deduce how the important quantities, such
plate velocity curve depicted in Fig. 1z, From Fig. o 1101 55 ypa beginning of the transition region and the velocity at

&which the stress maximum is attained, depend on the mo-
lecular parameters.
Furthermore, it is well known that the life time of a
IV. CONCLUSIONS AND DISCUSSION grafted chain is not infinite, since they debond from the solid
surface or break. In fact, the population of the tethered chains
We proposed a self-consistent model to explain wall slipnot constant, but a dynamical quantity: chains attach and
from a molecular point of view. The model contains two detach continuously. It is a challenge to combine this bond-
important relaxation mechanisms for grafted chains: CCRng (debonding process with the present approach, since
and arm retraction. It was demonstrated that when the modehen a rather complete picture becomes available allowing
was evaluated via numerical simulations in a plane Couettefor accurate calculation of slip laws for any polymer melt.
flow geometry for low to moderate grafting densities, it ex-
hibits a stick-slip transition, in agreement with experiments. ACKNOWLEDGMENTS
This can be explained as a transition from arm retraction to
CCR as the dominating relaxation mechanism for the teth- This research was performed as a part of the 3PI project
ered chains. The velocity profile was also calculated andsrant No.(G5RD-CT-2000-00238 which is supported by
shown to be nonlinear in the interfacial layer, wherethe European Union.
entanglement-disentanglement takes place.
The stress reaches a maximum as a function of the upper APPENDIX

pIaFe velocity. Thg n?axm_ur_n* 'S att_alned ata value\_ty‘_ One can rewrite Eqg16) after another differentiation in
which does not coincide with/;, but is much larger. Tr_lls IS the matrix form
due to the fact that only for very large plate velocities the
bulk chains succeed in pushing the tethered chains parallel to ] 0
the wall. If this happens the stress in the tethered chains
squeezed against the wall increases linearly with the slip ve- _
locity of the bulk molecules sliding along. The resulting wall Y| = 20 —1—0¢& 3 y I
shear stress versus slip velocity $sshaped. Such a non- z -
monotonic slip wall may give rise to unstable behavior. In
Refs.[11,16,2§ it was shown that the so-called spurt insta- oo ]
bility is perfectly described by such a slip law. However, theWherex,y,z now stand fow,v4,v4, respectively. The cor-
law used there was introduced heuristically. The approackesponding eigenvalue equation reads as
that was taken here makes it possible to calculate the slip law
starting from molecular data. This is essential for any spurt 3 3\?
icti A+ —

model to have predictive power. €

The model developed here contains assumptions which
are to be relaxed in future work. In order for our model to beyyhere we have written for simplicity for 6,. This third
applicable in practice it is necessary to deal with polydisperyrder equation is easily solved and yields the following three
sity. This implies that one has to average over a distributionegative eigenvalues:
of chains lengths. If the numerics can be improved upon it is,
in principle, feasible to perform numerical simulations for 1 2-0€ ¢
different chain lengths and to obtain the slip velocity and Ni=——|1+2 co{—”, (A2)
stress as averages of these simulations. € 3 3

We should also remark that the effect of loops is ne- 5
glected. This can be justified, since it is far harder for a loop Aoz — E[1+2 2-0e cos( ¢ 277)
to relax completely and therefore they do not contribute to 2

slip velcity would lead to a similaB-shaped curve.

X
x

1+ 6 €2

+—=0, (A1)

€
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1 2—9 62 ¢ 20 Vp e)\lt_ e—(2/€)t
—__ = T - __P —(2/e)t - -
)\3— 6 1+2 3 CO<3 3 ) . Uz(t) 2 [l+e ]+Cl 2+)\l€
ehat— g—(2/ent ehat— g~ (2ett
Here ¢ is defined by +C, 2 hge }+C3 T hae
A6
27(1+ 6 €%)? (A6)
¢=arccos — —4(2_ 923 | (A3) The important convective relaxation time is given by
: : : 1 nO\/N—eb 710\/N—e
Equation(A2) are, to an excellent approximation, equal to = = = )
q (A2) PP g e 20 6kgTriv  2biyv (A7)
0e |2 1 27 The cased=0 is simplest since then Eqg€lL6) reduce to
Ni=——="1\/5C09 zarccos— \/=z||=—2 f €,
2 V3 3 32 -
El)1+Ul=Uz,
1 \F 1 \/?7 27 - _
- — — — — — - EU2+202—U3+U . (A8)
N, c 1+2 3005( 3arcco% 37 + 3 } 1
Solving forv, gives the following expression far,(t),
3-\6
__ , e—t/e t
2¢ vl(t)zvpe*““r TJ'Oet Tep o (t")dt’. (A9)
1 \F 1 \/27 27 When Eq.(A9) is substituted in the evolution equation for
Ng=— | 1+27\/3c0q zarccos— \/ 5|+ 3~ v,, We obtain after differentiating one more time the differ-
ential equation fow»(t),
3+.5
- - . (A4) . . (%] Vp
2¢ Ev2+3v2+?=?, (A10)

We can now write down the solution for,(t) by impos- ~ which is readily solved and gives

ing the initial conditionsv4(0)=V,, v1(0)=—6X,(0), +5 3-5
v1(0)=[6X,(0)/€] V8, which yields vz(t)zvp+Aexp[— P t+Bexp{—Tt}
All
v1(t)=C ert+ C et + Cetst, (A5) (ALL)

The coefficientsA andB are determined by, and the value
of the velocity in the first and second layer just befdre

where C,,C,,C3 are functions of the eigenvalues and the pecomes zeray,(0) andw,(0), respectively, as follows:
initial values and given by

s VA0 +B) V(1= 15) ~204(0)

60— €V, — €Ny gV, — €\, 6X1(0) — €N 36X, (0 :
Ci=— EVpT EAQAZV ™ ENp 1(0)—€\s 1()’ 2\/5
€(N1—A2)(N1—A3)
 02(0)(— 1+ 5) = V(14 5) +20,4(0)
0+ eV eNh gVt eA10X4(0) + eA36X4(0) B= 25 :
2 e(\1—A2) (N2 \g) ’

For v, we have a similar expression as foy,

—0— Evp_E)\l)\zvp_6)\10)(1(0)_6)\20)(1(0) 2A 2B t 2A
Cs=- 2 : v(t)=Vp+ - exp——|—-——=
€(N1N2=N1A3—NpA3+A3) 1+J5 —1+.5 €] 1+5
One can easily see thay, is of the order ofV, up to an xex;{ - 3t \/gt + 2B ex;{ - —3_ \/gt}
order e correction, so that,(t)—v4(t) is almost equal to 2e —1+.5 2e
Vp—v5,(t), which shows that the shear rate is homogeneous (A12)

throughout the flow. The velocity of the first layer slows
down to zero exponentially with a typical relaxation rate of Equations(A11) and(A12) show that the velocity profile
2 6 e. The second layer is slowed down at the same rate tumps, almost instantaneously, back to the initial plug pro-
V2 file.

p H

011803-11



JOHAN L. A. DUBBELDAM AND JAAP MOLENAAR PHYSICAL REVIEW E 67, 011803 (2003

[1] M. Sun and C. Ebner, Phys. Rev. Le#d, 3491(1992. 34, 3412(2001).

[2] M. Mooney, J. Rheol2, 210(1931). [13] Y.M. Joshi and A.K. Lele, J. Rheo#6, 427 (2002.

[3] P.G. de Gennes, C. R. Seances Acad. Sci., Set88 219 [14] D.W. Mead, R.G. Larson, and M. Doi, Macromoleculgs
(1979. 7895(1998.

[4] F. Brochard and P.G. de Gennes, Langn@,iB033(1992. [15] C.C. Hua and J.D. Schieber, J. Chem. Ph{89, 10 018

[5] F. Brochard-Wyart, C. Gay, and P.G. de Gennes, Macromol- (1998; C.C. Hua, J.D. Schieber, and D.C. Veneribsg. 109,
ecules29, 377 (1996. 10 028(1998.

[6] A. Adjari, F. Brochard-Wyart, P.G. de Gennes, L. Leibler, J.L. [16] G.C. Georgiou, Rheol. Acta5, 19 (1996.
Viovy, and M. Rubinstein, Physica 204, 17 (1994. [17] P.P. Drda and S.Q. Wang, Phys. Rev. L&8, 2698(1995.

[7] K.B. Migler, H. Hervet, and L. Lger, Phys. Rev. LetiZ0, 287 [18] Y. Inn and S.Q. Wang, Phys. Rev. L€Ti6, 467 (1996).
(1993. [19] M.M. Denn, Annu. Rev. Fluid Mech22, 13 (1990.

[8] K.B. Migler, G. Massey, H. Hervet, and L. ger, J. Phys.: [20] M.M Denn, Annu. Rev. Fluid Mech33, 265 (2001).
Condens. Matte6, A301-304(1994. [21] S.G. Hatzikiriakos and J.M. Dealy, J. Rhe8b, 845 (1992.

[9] L. Léger, H. Hervet, G. Massey, and E. Durliat, J. Phys.: Con-[22] M. Doi and S.F. EdwardsThe Theory of Polymer Dynamics
dens. Matte®, 7719(1997). (Oxford Science Publications, New York, 1986

[10] J.D. Shore, D. Ronis, L. Pichand M. Grant, Phys. Rev. &5, [23] D.S. Pearson and E. Helfland, Macromolecul&s888(1984).
2976(1997. [24] R.C. Ball and T.C.B. McLeish, Macromolecule??, 1911

[11] J.D. Shore, D. Ronis, L. Pichand M. Grant, Phys. Rev. Lett. (1989.
77, 655(1996. [25] A.L. Yarin and M.D. Graham, J. Rheot2, 1491(1998.

[12] Y.M. Joshi, AK. Lele, and R.A. Mashelkar, Macromolecules [26] J. Den Doelder, Ph.D. thesis, TU, Eindhoven, 2000.

011803-12



